
Instinct: A Biologically Inspired Reactive Planner for Embedded Environments

Robert H. Wortham, Swen E. Gaudl, Joanna J. Bryson
Dept of Computer Science, University of Bath

Claverton Down, Bath, BA2 7AY, UK

Abstract

The Instinct Planner is a new biologically inspired re-
active planner, based on an established behaviour based
robotics methodology and its reactive planner compo-
nent — the POSH planner implementation. It includes
several significant enhancements that facilitate plan de-
sign and runtime debugging. It has been specifically de-
signed for low power processors and has a tiny mem-
ory footprint. Written in C++, it runs efficiently on both
ARDUINO (ATMEL AVR) and MICROSOFT VC++ en-
vironments and has been deployed within a low cost
maker robot to study AI Transparency. Plans may be au-
thored using a variety of tools including a promising vi-
sual design language, currently implemented using the
DIA drawing package.

INTRODUCTION
From the 1950’s through to the 1980’s the study of embodied
AI assumed a cognitive symbolic planning model for robotic
systems — SMPA (Sense Model Plan Act) — the most well
known example of this being the Shakey robot project (Nils-
son, 1984). In this model the world is first sensed and a
model of the world is constructed within the AI. Based on
this model and the objectives of the AI, a plan is constructed
to achieve the goals of the robot. Only then does the robot
act. Although this idea seemed logical and initially attrac-
tive, it was found to be quite inadequate for complex, real
world environments. Generally the world cannot be fully
modelled until the robot plan is underway, since sensing the
world requires moving through it. Also, where environments
change faster than the rate at which the robot can complete
its SMPA cycle, the planning simply cannot keep up. Brooks
(1995) provides a more comprehensive history, which are
not repeated here.

In the 1990’s Rodney Brooks and others (Breazeal and
Scassellati, 2002) introduced the then radical idea that it was
possible to have intelligence without representation (Brooks,
1991). Brooks developed his subsumption architecture as a
pattern for the design of intelligent embodied systems that
have no internal representation of their environment, and
minimal internal state. These autonomous agents could tra-
verse difficult terrain on insect-like legs, appear to inter-
act socially with humans through shared attention and gaze
tracking, and in many ways appeared to posses behaviours

similar to that observed in animals. However, the systems
produced by Brooks and his colleagues could only respond
immediately to stimuli from the world. They had no means
of focusing attention on a specific goal or of executing
complex sequences of actions to achieve more complex be-
haviours. The original restrictions imposed by Brooks’ sub-
sumption architecture were subsequently relaxed with later
augmentations such as timers, effectively beginning the tran-
sition to systems that used internal state in addition to sen-
sory input in order to determine behaviour.

Following in-depth studies of animals such as gulls in
their natural environment, ideas of how animals perform ac-
tion selection were originally formulated by Nico Tinber-
gen and other early ethologists (Tinbergen, 1951; Tinbergen
and Falkus, 1970). Reactions are based on pre-determined
drives and competences, but depend also on the internal
state of the organism (Bryson, 2000). Bryson (2001) har-
nessed these ideas to achieve a major step forwards with
the POSH (Parallel Ordered Slipstack Hierarchy) reactive
planner and the BOD (Behaviour Oriented Design) method-
ology, both of which are strongly biologically inspired. It
is important to understand the rationale behind biologically
inspired reactive planning. It is based on the idea that bio-
logical organisms constantly sense the world, and generally
react quickly to sensory input, based on a hierarchical set
of behaviours structured as Drives, Competences and Ac-
tion Patterns. Their reactive plan uses a combination of sen-
sory inputs and internal priorities to determine which plan
elements to execute, ultimately resulting in the execution
of leaf nodes in the plan, which in turn execute real world
actions. For further reading see Gurney, Prescott, and Red-
grave (1998), Prescott, Bryson, and Seth (2007) and Seth
(2007).

At run-time, the reactive plan itself is essentially fixed.
Various slower reacting systems may also be used to modify
priorities or other parameters within the plan. These slower
reacting systems might be compared with emotional or en-
docrinal states in nature that similarly affect reactive prior-
ities (Gaudl and Bryson, 2014). Similarly the perception of
senses can be affected by the internal state of the plan, an
example being the latching (or hysteresis) associated with
sensing (Rohlfshagen and Bryson, 2010).

In nature, the reactive plan is subject to possible learn-
ing that may change the plan parameters or even modify the



structure of the plan itself as new skills and behaviours are
learned. This learning may take place ontogenetically, i.e.
within the lifetime of an individual, or phylogenetically, by
the process of natural selection, across the lifetimes of many
individuals. Bryson’s BOD approach suggests that humans
provide most of the necessary learning in order to improve
the plan over time, in place of natural selection. However,
Gaudl (manuscript in preparation) successfully uses genetic
algorithms to automate part of this learning process, albeit
within a computer game simulation.

A reactive plan is re-evaluated on every plan cycle, usu-
ally many times every second, and this requires that the in-
quiries from the planner to the senses and the invocation
of actions should respond quickly. This enables the reac-
tive plan to respond quickly to changes in the external en-
vironment, whilst the plan hierarchy allows for complex se-
quences of behaviours to be executed. Applying these ideas
to robots we can see that for senses, this might imply some
caching of sense data. For actions, it also implies that long
running tasks (relative to the rate of plan execution), need
to not only return success or failure, but also another status
to indicate that the action is still in progress and the plan
must wait at its current execution step before moving on to
its next step. The action may be executing on another thread,
or may just be being sampled when the call to the action is
made. This is implementation specific and does not affect
the functioning of the planner itself. If re-invoked before it
completes, the action immediately returns an In-Progress re-
sponse. In this way, longer running action invocations do not
block the planner from responding to other stimuli that may
still change the focus of attention by, for example, releasing
another higher priority Drive.

Each call to the planner within the overall scheduling loop
of the robot starts a new plan cycle. In this context an action
may be a simple primitive, or may be part of a more complex
pre-defined behaviour module, such as a mapping or trajec-
tory calculation subsystem. It is important to note that the
BOD methodology does not predicate that all intelligence is
concentrated within the planner. Whilst the planner drives
action selection, considerable complexity can still exist in
sensory, actuation and other probabilistic or state based sub-
systems within the overall agent (Bryson, 2001).

The computer games industry has advanced the use of
AI for the simulation of non player characters (Lim, Baum-
garten, and Colton, 2010). Behaviour trees are similarly hi-
erarchical to POSH plans, but have additional elements that
more easily allow logical operations such as AND, OR,
XOR and NOT to be included within the plan. For exam-
ple it is possible for a goal to be reached by successfully
executing only one of a number of behaviours, trying each
in turn until one is successful. Bryson’s original design of
POSH does not easily allow for this kind of plan structure.

Behaviour trees are in turn simplifications of Hierarchi-
cal Task Network (or HTN) planners (Ghallab, Nau, and
Traverso, 2004). Like POSH, HTN planners are able to cre-
ate and run plans that contain recursive loops, meaning that
they can represent any computable algorithm. An interesting
parallel can be drawn here with Complexity theory. Holland
(2014) argues that a Complex Agent System (CAS) is often

characterized by the fact that it can be decomposed into a
set of hierarchical layers, with each layer being Turing com-
plete. For a biological entity Holland identifies these layers
as existing at the levels of DNA, organelle, cell, organ, or-
ganism and social levels. For an artificial agent we can iden-
tify these layers as computer hardware, operating system,
application programming language, reactive planner, plan,
agent and social levels. Thus we can argue that to create an
artificial agent truly capable of emergent implicit behaviour,
we should strive to ensure that the Planner on which its be-
haviour depends should be Turing complete, particularly al-
lowing looping and recursion.

THE INSTINCT PLANNER
The Instinct Planner is a reactive planner based on Bryson’s
POSH (Bryson, 2008, 2001). It includes several enhance-
ments taken from more recent papers extending POSH
(Rohlfshagen and Bryson, 2010; Gaudl and Bryson, 2014),
together with some ideas from other planning approaches,
notably Behaviour Trees (BT — Lim, Baumgarten, and
Colton, 2010). A POSH plan consists of a Drive Collection
(DC) containing one or more Drives. Each Drive (D) has a
priority and a releaser. When the Drive is released as a result
of sensory input, a hierarchical plan of Competences, Action
Patterns and Actions follows.

• Action Pattern (AP): Action patterns are used to reduce
the computational complexity of search within the plan
space and to allow a coordinated fixed sequential exe-
cution of a set of elements. An action pattern—AP =
[α0, . . . , αk]—is an ordered set of Actions that does not
use internal precondition or additional perceptual infor-
mation. It provides the simplest plan structure in POSH
and allows for the optimised execution of behaviours. An
example would be an agent that always shouts and moves
its hand upwards when touching an hot object. In this
case, there is no need for an additional check between the
two Action primitives if the agent should always behave in
that manner. APs execute all child elements before com-
pleting.

• Competence (C): Competences form the core part of
POSH plans. A competence C = [c0, . . . , cj ] is a
self-contained basic reactive plan (BRP) where cb =
[π, ρ, α, η], b ∈ [0, . . . , j] are tuples containing π, ρ, α
and η: the priority, precondition, child node ofC and max-
imum number of retries. The priority determines which of
the child elements to execute, selecting the one with the
highest priority first. The precondition is a concatenated
set of senses that either release or inhibit the child node
α. The child node itself can be another Competence or
an Action or Action Pattern. To allow for noisy environ-
ments a child node can fail a number of times, specified
using η, before the Competence ignores the child node for
remaining time within the current cycle. A Competence
sequentially executes its hierarchically organised child-
nodes where the highest priority node is the competence
goal. A Competence fails if no child can execute or if an
executed child fails.



• Drive (D): A Drive—D = [π, ρ, α,A, v]—allows for the
design and pursuit of a specific behaviour as it main-
tains its execution state. The Drive Collection determines
which Drive receives attention based on each Drive’s π,
the associated priority of a Drive. ρ is the releaser, a set
of preconditions using senses to determine if the drive
should be pursued. α is either an Action, Action Pat-
tern or a Competence and A is the root link to the Drive
Collection. The last parameter v specifies the execution
frequency, allowing POSH to limit the rate at which the
Drive can be executed. This allows for coarse grain con-
currency of Drive execution (see below).

• Drive Collection (DC): The Drive Collection—DC—is
the root node of the plan—DC = [g,D0, . . . , Di]. It con-
tains a set of Drives Da, a ∈ [0 . . . i] and is responsible
for giving attention to the highest priority Drive. To allow
the agent to shift and focus attention, only one Drive can
be active in any given cycle. Due to the parallel hierarchi-
cal structure, Drives and their sub-trees can be in different
states of execution. This allows for cooperative multitask-
ing and a quasi-parallel pursuit of multiple behaviours at
the Drive Collection level.

For a full description of the POSH reactive planner see
Bryson (2001).

Enhancements and Innovations
The Instinct Planner includes a full implementation of what
we term Drive Execution Optimisation (DEO). DEO avoids
a full search of the plan tree at every plan cycle which would
be expensive. It also maintains focus on the task at hand.
This corresponds loosely to the function of consciousness
attention seen in nature (Bryson, 2011). A form of this was
in Bryson’s original POSH, but has not been fully imple-
mented in subsequent versions. The Drive, Competence and
Action Pattern elements each contain a Runtime Element ID.
These variables are fundamental to the plan operation. Ini-
tially they do not point to any plan element. However, when
a Drive is released the plan is traversed to the point where
either an Action is executed, or the plan fails at some point
in the hierarchy. If the plan element is not yet completed it
returns a status of In Progress and the IDs of the last suc-
cessful steps in the plan are stored in Runtime Element ID
in the Drive, Competence and Action Pattern elements. If
an action or other sub element of the plan returns success,
then the next step in the plan is stored. On the next cycle of
the drive, the plan hierarchy is traversed again but continues
from where it got to last plan cycle, guided by the Runtime
Element IDs. A check is made that the releasers are still ac-
tivated (meaning that the plan steps are still valid for execu-
tion), and then the plan steps are executed. If a real world
action fails, or the releaser check fails, then the Runtime El-
ement ID is once again cleared. During execution of an Ac-
tion Pattern (a relatively quick sequence of actions), sensory
input is temporarily ignored immediately above the level of
the Action Pattern. This more closely corresponds to the re-
flex behaviour seen in nature. Once the system has started
to act, then it continues until the Action Pattern completes,
or an element in the Action Pattern explicitly fails. Action

Patterns are therefore not designed to include Actions with
long running primitive behaviours.

In addition to these smaller changes there are three major
innovations in the Instinct Planner that increase the range of
plan design options available to developers:

• Firstly, the idea of runtime alteration of drive priority.
This implementation closely follows the RAMP model of
Gaudl and Bryson (2014) which in turn is biologically in-
spired, based on spreading activation in neural networks.
Within the Instinct Planner we term this Dynamic Drive
Reprioritisation (DDR). DDR is useful to modify the pri-
ority of drives based on more slowly changing stimuli, ei-
ther external or internal. For example, a recharge battery
drive might be used to direct a robot back to its charging
station when the battery level becomes low. Normally this
drive might have a medium priority, such that if only low
priority drives are active then it will return when its bat-
tery becomes discharged to say 50%. However, if there
are constantly high priority drives active, then the battery
level might reach a critical level of say 10%. At that point
the recharge battery drive must take highest priority. A
comparison can be drawn here with the need for an ani-
mal to consume food. Once it is starving the drive to eat
assumes a much higher priority than when the animal ex-
periences normal levels of hunger. For example, it will
take more risks to eat, rather than flee from predators.

• Secondly, the idea of flexible latching provides for a more
dynamic form of sense hysteresis, based not only on plan
configuration, but also the runtime focus of the plan.
This implementation follows the work of Rohlfshagen
and Bryson (2010). Within the Instinct Planner we term
it Flexible Sense Hysteresis (FSH). This hysteresis pri-
marily allows for noise from sensors and from the world,
but Rohlfshagens paper also has some basis in biology to
avoid dithering by prolonging behaviours once they have
begun. If the Drive is interrupted by one of a higher pri-
ority, then when the sense is again checked, it will be the
Sense Flex Latch Hysteresis that will be applied, rather
than the Sense Hysteresis.

• Thirdly, we enhance the Competences within the plan,
such that it is possible to group a number of competence
steps by giving them the same priority. We refer to this
as a priority group. Items within a group have no defined
order. Within a priority group, the Competence itself can
specify whether the items must all be successfully exe-
cuted for the Competence to be successful (the AND be-
haviour), or whether only one item need be successful (the
OR behaviour). In the case of the OR behaviour, several
items within the group may be attempted and may fail, be-
fore one succeeds. At this point the Competence will then
move on to higher priority items during subsequent plan
cycles. A Competence can have any number of priority
groups within it, but all are constrained to be either AND
or OR, based on the configuration of the Competence it-
self. This single enhancement, whilst sounding straight-
forward, increases the complexity of the planner code sig-
nificantly, but allows for much more compact plans, with
a richer level of functionality achievable within a single



Competence than was provided with the earlier POSH im-
plementations.

Multi Platform
The Instinct planner itself is able to run both within MI-
CROSOFT VISUAL C++ and the ARDUINO development
environments (Arduino, 2016) as a C++ library. The AR-
DUINO uses the ATMEL AVR C++ COMPILER (Atmel Cor-
poration, 2016a) with the AVR LIBC library (Atmel Corpo-
ration, 2016b) — a standards based implementation of gcc
and libc. This arrangement harnesses the power of the VI-
SUAL C++ Integrated Development Environment (IDE) and
debugger, hugely increasing productivity when developing
for the ARDUINO platform, which has no debugger and only
a rudimentary IDE. We have a complete implementation of
the Instinct Planner on an ARDUINO based robot named R5.
The robot runs using various test plans, see figure 1. Due to
the very compact memory architecture of Instinct, the plan-
ner is able to store plans with up to 255 elements within
the very limited 8KB memory (RAM) available on the AR-
DUINO MEGA (ATMEL AVR ATMEGA2560 MICROCON-
TROLLER). The 255 element limitation arises from the use
of a single byte to store plan element IDs within the AR-
DUINO environment.

Figure 1: The R5 ARDUINO based Maker Robot in a laboratory
test environment. The camera mounted on the robot is used to
record robot activity, but is not used by the robot itself.

The robot itself has active infrared and ultrasonic dis-
tance sensors, a head capable of scanning its environment,
a passive infrared (PIR) sensor to assist in the detection of
humans interacting with it, and proprioceptive sensing of
odometry (distance travelled) and drive motor current. It has
simple and more complex underlying behaviours that can be
invoked by the planner, such as the ability to turn in the di-
rection of the most clear pathway ahead, or to use its head to
scan for the presence of a human. It also has a multicoloured
headlight that may be used for signalling to humans around
it. Finally, it has an electronically erasable programmable
read only memory (EEPROM) that permanently stores both
the robot’s configuration parameters and the Instinct plan.

This leverages the planner’s ability to serialise plans as a
byte stream, and then reconstitute the plan from that stream
at startup.

Memory Management
In order to produce a planner that operates effectively in
an environment with severely limited working memory re-
sources (RAM), considerable design effort has been applied
to the memory management architecture within the planner.
There are 6 separate memory buffers, each holding fixed
record length elements for each element type in the plan —
Drives, Competences, Competence Elements, Action Pat-
terns, Action Pattern Elements and Actions. An instance of
Instinct has a single Drive Collection — the root of the plan.

Within each plan element, individual bytes are divided
into bit fields for boolean values, and the data is nor-
malised across elements to avoid variable length records.
This means, for example, that Competence Elements hold
the ID of their parent Competence, but the Competence it-
self does not hold the IDs of each of its child Competence
Elements. At runtime a search must be carried out to identify
which Competence Elements belong to a given Competence.
Thus, the planner sacrifices some search time in return for a
considerably more compact memory representation. Fortu-
nately this search is very fast, since the Competence Ele-
ments are stored within a single memory buffer with fixed
length records. Testing shows the time taken by this search-
ing was negligible in comparison with the plan cycle rate of
the robot.

Plan elements, senses and actions are referenced by
unique numeric IDs, rather than by name. The memory stor-
age of these IDs is defined within the code using the C++
#typedef preprocessor command, so that the width of
these IDs can be configured at compile time, depending on
the maximum ID value to be stored. This again saves mem-
ory in an environment where every byte counts. Considera-
tion of stack usage is also important, and temporary buffers
and similar structures are kept to a minimum to avoid stack
overflow.

Fixed strings (for example error messages) and other data
defined within programs are usually also stored within work-
ing memory. Within a microcontroller environment such as
ARDUINO this is wasteful of the limited memory resource.
This problem has been eliminated in the Instinct Planner im-
plementation by use of AVR LIBC functions (Atmel Corpo-
ration, 2016b) that enable fixed data to be stored in the much
larger program (flash) memory. For code compatibility these
functions have been replicated in a pass-through library so
that the code compiles unaltered on non-microcontroller
platforms.

Instinct Testing Environment
As a means to test the functionality of the Instinct Planner
within a sophisticated debugging environment, we have an
implementation of the planner within MICROSOFT VISUAL
C++, and have tested a very simple simulation of a robot
within a grid based world. The world allows multiple robots
to roam, encountering one another, walls and so on. This
could be extended in future, with a graphical user interface



to better show both the world and the real time monitor-
ing available from within the plan. However our current re-
search focusses on the real time debugging of actual robots
(Wortham, Theodorou, and Bryson, 2016). Building trans-
parency into robot action selection can help users build a
more accurate understanding of the robot, see below.

The Instinct Planner code is not fundamentally limited
to 255 plan elements, and will support much larger plans
on platforms with more memory. In MICROSOFT VISUAL
C++ for example, plans with up to 65,535 nodes are sup-
ported, simply by redefining the instinctID type from
unsigned char to unsigned int.

Instinct Transparency Enhancements
The planner has the ability to report its activity as it runs,
by means of callback functions to to a monitor C++ class.
There are six separate callbacks monitoring the Execution,
Success, Failure, Error and In-Progress status events, and the
Sense activity of each plan element. In the VISUAL C++ im-
plementation, these callbacks write log information to files
on disk, one per robot instance. This facilitates the testing
and debugging of the planner. In the ARDUINO robot, the
callbacks write textual data to a TCP/IP stream over a wire-
less (wifi) link. A JAVA based Instinct Server receives this
information, enriches it by replacing element IDs with ele-
ment names, and logs the data to disk. This communication
channel also allows for commands to be sent to the robot
while it is running.

With all nodes reporting all monitor events over wifi, a
plan cycle rate of 20Hz is sustainable. By reducing the level
of monitoring, we reduce the volume of data sent over wifi
and plan cycle rates of up to 40Hz are achievable. In practice
a slower rate is likely to be adequate to control a robot, and
will reduce the volume of data requiring subsequent process-
ing. In our experiments a plan cycle rate of 8Hz was gener-
ally used.

Figure 2 shows how the planner sits within the robot
software environment and communicates with the Instinct
Server.

Instinct Command Set
The robot command set primarily communicates with the
planner which in turn has a wide range of commands, allow-
ing the plan to be uploaded and altered in real time, and also
controlling the level of activity reporting from each node in
the plan. When the robot first connects to the Instinct Server,
the plan and monitoring control commands are automati-
cally sent to the robot, and this process can be repeated at
any time while the robot is running. This allows plans to be
quickly modified without requiring any re-programming or
physical interference with the robot.

Creating Reactive Plans with iVDL
POSH plans are written in a LISP like notation, either us-
ing a text editor, or the ABODE editor (Brom et al., 2006;
Bryson, 2013). However, Instinct plans are written very dif-
ferently, because they must use a much more compact nota-
tion and they use IDs rather than names for plan elements,

SERVER ROBOT

Plan Manager

Reactive 
Planner

Action 
Selection

Behaviour 
Library

Sensor model

Internal 
Robot State

TCP/IP over WiFi

Plan 
Monitor

WORLD

Instinct 
Planner

Figure 2: Software Architecture of the R5 Robot showing inter-
faces with the World and the Instinct Server. The Instinct Planner
provides the action selection subsystem of the robot.

senses and actions. We have developed the Instinct Visual
Design Language (iVDL) based on the ubiquitous Unified
Modelling Language (UML) notation. UML is supported by
many drawing packages and we have developed a simple
PYTHON export script to allow plans to be created graphi-
cally within the DIA drawing tool (Macke, 2014). The ex-
port script takes care of creating unique IDs and allows the
plans to use named elements, thus increasing readability.
The names are exported alongside the plan, and whilst they
are ignored by the planner itself, the Instinct-Server uses this
export to convert IDs back into names within the log files
and interactive display.

Figure 3 shows the Instinct plan template within Dia. We
use the UML class notation to define classes for the six types
of element within the Instinct plan, and also to map the exter-
nal numerical identifiers (IDs) for senses and robot actions
to names. We use the UML aggregation connector to iden-
tify the connections between the plan elements. This can be
read, for example, as “A Drive can invoke an Action, a Com-
petence or an Action Pattern”.

Figure 4 shows a plan for the R5 robot. At this level of
magnification the element details are not legible, but this
screen shot gives an impression of how plans can be laid
out.

This particular plan searches the robot’s environment,
avoiding objects and adjusting its speed according to the
space around it. As it moves around it attempts to detect
humans within the environment. The robot also temporarily
shuts down in the event of motor overload, and it will period-
ically hibernate when not in open space to conserve battery
power. Such a plan might be used to patrol hazardous areas
such as industrial food freezers, or nuclear facilities.

The plan was designed and debugged within the space of
a week. During the debugging, the availability of the trans-



Figure 3: Instinct Plan element types and their relationship, shown
within the DIA drawing tool.

parency data logged by the Instinct Server was extremely
useful, because mere observation of the robot’s emergent be-
haviour is frequently insufficient to determine the cause of
plan malfunction.

The actual positioning of plan elements within the draw-
ing is entirely up to the plan designer. Since Dia is a gen-
eral purpose graphical editor, other symbols, text and im-
ages can be freely added to the file. This is useful at design
time and during the debugging of the robot. It also provides
an additional vehicle for the creation of longer term project
documentation. We suggest that an in-house standard is de-
veloped for the layout of plans within a development group,
such that developers can easily read one another’s plans.

Plan Debugging and Transparency
Currently, work is underway within the Artificial Models of
Natural Intelligence (AmonI) research group at the Univer-
sity of Bath1 to create a new version of the ABODE plan
editor (Theodorou, Wortham, and Bryson, 2016). This ver-
sion directly writes Instinct plans, and also reads the real-
time transparency data emanating from the Instinct Planner,
in order to provide a real-time graphical display of plan exe-
cution. In this way we are beginning to explore both runtime
debugging and wider issues of AI Transparency.

CONCLUSIONS AND FURTHER WORK
The Instinct planner is the first major re-engineering of
Bryson’s original work for several years, and allows deploy-
ment in practical real time physical environments such as
our ARDUINO based maker robot.

1AmonI — http://www.cs.bath.ac.uk/ai/AmonI.html

Figure 4: The plan used by the R5 robot to enable it to explore
an environment, avoid obstacles, and search for humans. The plan
also includes emergency behaviours to detect and avoid excessive
motor load, and to conserve battery by sleeping periodically.

By using a very lean coding style and efficient memory
management, we maximise the size of plan that can be dy-
namically loaded and the performance in terms of execution
rate.

The transparency capabilities, novel to this implementa-
tion of POSH, provides the necessary infrastructure to de-
liver real time plan debugging. Work is currently underway
to leverage this architecture with a real time visual debug-
ging tool, initially to assist the work of reactive plan design-
ers, but also as a research tool for the investigation of wider
AI Transparency issues.

The Visual Design Language (iVDL) is a novel represen-
tation of reactive plans, and we demonstrate that such plans
can be designed using a standard drawing package and ex-
ported with a straightforward plug-in script. We envisage the
development of similar plug-ins for other drawing tools such
as MICROSOFT VISIO.

Although primarily developed for physical robot imple-
mentations, the Instinct Planner has obvious applications in
teaching, simulation and game AI environments. We envis-
age extending the current Instinct Testing Environment to
provide a richer, GUI based test platform for Instinct, and
for use as a teaching tool to teach the concepts of reactive
planning in general and the Instinct Planner in particular.

Finally, we would like to see the implementation of In-
stinct on other embedded and low cost Linux computing en-
vironments such as the RASPBERRY PI (Raspberry Pi Foun-
dation, 2016). With more powerful platforms such as the PI,
much larger plans can be developed and we can test both
the runtime performance of very large plans, and the design



efficiency of iVDL with multi-user teams.

References
Arduino. 2016. Arduino Website. https://www.arduino.cc/.

Atmel Corporation. 2016a. Atmel Studio Website.
http://www.atmel.com/Microsite/atmel-studio/.

Atmel Corporation. 2016b. AVR Libc Reference Manual.
http://www.atmel.com/webdoc/avrlibcreferencemanual/.

Breazeal, C., and Scassellati, B. 2002. Robots that imitate
humans. Trends in Cognitive Sciences 6(11):481–487.

Brom, C.; Gemrot, J.; Bida, M.; Burkert, O.; Partington,
S. J.; and Bryson, J. J. 2006. POSH Tools for Game Agent
Development by Students and Non-Programmers. In The
Nineth International Computer Games Conference: AI,
Mobile, Educational and Serious Games., 1–8. Bath, UK:
The University of Bath.

Brooks, R. a. 1991. Intelligence Without Representation.
Artificial Intelligence 47(1):139–159.

Brooks, R. 1995. Intelligence Without Reason. In Steels, L.,
and Brooks, R. R. A., eds., The Artificial Life Route to Ar-
tificial Intelligence: Building Embodied, Situated Agents.
Mahwah, New Jersey, USA: L. Erlbaum Associates. 25–
81.

Bryson, J. J. 2000. The study of sequential and hierarchi-
cal organisation of behaviour via artificial mechanisms of
action selection. M.Phil. Thesis, University of Edinburgh.

Bryson, J. J. 2001. Intelligence by Design: Principles of
Modularity and Coordination for Engineering Complex
Adaptive Agents. Ph.D. Dissertation, MIT, Department of
EECS, Cambridge, MA. AI Technical Report 2001-003.

Bryson, J. 2008. Parallel-rooted, Ordered Slip-stack Hier-
archy. http://www.cs.bath.ac.uk/˜jjb/web/posh.html.

Bryson, J. J. 2011. A Role for Consciousness in Action
Selection. In Chrisley, R.; Clowes, R.; and Torrance, S.,
eds., Proceedings of the AISB 2011 Symposium: Machine
Consciousness, 15—-20. York: SSAISB.

Bryson, J. J. 2013. Advanced Behav-
ior Oriented Design Environment (ABODE).
http://www.cs.bath.ac.uk/˜jjb/web/BOD/abode.html.

Gaudl, S., and Bryson, J. J. 2014. The Extended Ramp Goal
Module: Low-Cost Behaviour Arbitration for Real-Time
Controllers based on Biological Models of Dopamine
Cells. Computational Intelligence in Games 2014.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Se-
ries in Artificial Intelligence. Elsevier/Morgan Kaufmann.

Gurney, K. N.; Prescott, T. J.; and Redgrave, P. 1998. The
Basal Ganglia viewed as an Action Selection Device. In
Eighth International Conference on Artificial Neural Net-
works, 1033–1038. London, UK: Springer.

Holland, J. H. 2014. Complexity: A Very Short Introduction.
Oxford University Press.

Lim, C. U.; Baumgarten, R.; and Colton, S. 2010. Evolv-
ing behaviour trees for the commercial game DEFCON.
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 6024 LNCS(PART 1):100–110.

Macke, S. 2014. Dia Diagram Editor. http://dia-
installer.de/.

Nilsson, N. J. 1984. Shakey the Robot. Technical report,
SRI International, Technical Note 323.

Prescott, T. J.; Bryson, J. J.; and Seth, A. K. 2007. Intro-
duction. Modelling natural action selection. Philosophi-
cal transactions of the Royal Society of London. Series B,
Biological sciences 362(1485):1521–9.

Raspberry Pi Foundation. 2016. Raspberry Pi Website.
https://www.raspberrypi.org/.

Rohlfshagen, P., and Bryson, J. J. 2010. Flexible Latch-
ing: A Biologically-Inspired Mechanism for Improving
the Management of Homeostatic Goals. Cognitive Com-
putation 2(3):230–241.

Seth, A. K. 2007. The ecology of action selection: in-
sights from artificial life. Philosophical transactions of
the Royal Society of London. Series B, Biological sciences
362(1485):1545–1558.

Theodorou, A.; Wortham, R. H.; and Bryson, J. J. 2016.
Why is my robot behaving like that ? Designing trans-
parency for real time inspection of autonomous robots. In
EPSRC Principles of Robotics Workshop, Proceedings of
the AISB 2016 Annual Conference {accepted for publica-
tion}.

Tinbergen, N., and Falkus, H. 1970. Signals for Survival.
Oxford: Clarendon Press.

Tinbergen, N. 1951. The Study of Instinct. Oxford, UK:
Oxford University Press.

Wortham, R. H.; Theodorou, A.; and Bryson, J. J. 2016.
What Does the Robot Think ? Transparency as a Funda-
mental Design Requirement for Intelligent Systems. In
IJCAI-2016 Ethics for Artificial Intelligence Workshop
{accepted for publication}.


